https://www.halvorsen.blog

Numerical Differentiation with MATLAB

Hans-Petter Halvorsen

Numerical Differentiation

The derivative of a function $y=f(x)$ is a measure of how y changes with x.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

A numerical approach to the derivative of a function $y=f(x)$ is:

$$
\frac{d y}{d x}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Note! We will use MATLAB in order to find the numeric solution - not the analytic solution

Numerical Differentiation

MATLAB Functions for Numerical Differentiation: diff() polyder()

MATLAB is a numerical language and do not perform symbolic mathematics
... well, that is not entirely true because there is "Symbolic Toolbox" available for MATLAB.

Numerical Differentiation

Given the following equation:

$$
y=x^{3}+2 x^{2}-x+3
$$

- Find $\frac{d y}{d x}$ analytically (use "pen and paper").
- Define a vector x from -5 to +5 and use the $\operatorname{diff()~function~to~}$ approximate the derivative y with respect to $\mathrm{x}\left(\frac{\Delta y}{\Delta x}\right)$.
- Compare the data in a 2D array and/or plot both the exact value of $\frac{d y}{d x}$ and the approximation in the same plot.
- Increase number of data point to see if there are any difference.

Given the following equation:

$$
y=x^{3}+2 x^{2}-x+3
$$

Then we can get the analytically solution:

$$
\frac{d y}{d x}=3 x^{2}+4 x-1
$$

Symbolic Math Toolbox

We start by finding the derivate of $f(x)$ using the Symbolic Math Toolbox:

```
clear
clc
syms f(x)
syms x
f(x) = x^3 + 2**^2 -x +3
dfdt = diff(f, x, 1)
```

```
x = -5:1:5;
% Define the function y(x)
y = x.^3 + 2*x.^2 - x + 3;
% Plot the function y(x)
plot(x,y)
title('y')
% Find nummerical solution to dy/dx
dydx_num = diff(y)./diff(x);
dydx_exact = 3*x.^2 + 4.*x -1;
dydx = [[dydx_num, NaN]', dydx_exact']
% Plot nummerical vs analytical solution to dy/dx
figure(2)
plot(x,[dydx_num, NaN], x, dydx_exact)
title('dy/dx')
legend('numerical solution', 'analytical solution')
```


Numerical Solution

dydx =
422231814
$2-1$126
28 19
38
78 63
94

$$
y=x^{3}+2 x^{2}-x+3
$$

Figure 1
File Edit View Insert Tools Desktop Window Help ,

$\frac{d y}{d x}=3 x^{2}+4 x-1$
Figure 2
File Edit View Insert Tools Desktop Window Help

$$
\frac{d y}{d x}=3 x^{2}+4 x-1
$$

```
x = -5:0.1:5;
\begin{tabular}{lllllll} 
Figure 2 \\
\hline
\end{tabular}
```


$$
x=-5: 0.01: 5 ;
$$

Differentiation on Polynomials

Given the following equation:

$$
y=x^{3}+2 x^{2}-x+3
$$

Which is also a polynomial. A polynomial can be written on the following general form: $y(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$

- We will use Differentiation on the Polynomial to find $\frac{d y}{d x}$

From previous we know that the Analytically solution is:

$$
\frac{d y}{d x}=3 x^{2}+4 x-1
$$

```
p = [lllll
\[
y=x^{3}+2 x^{2}-x+3
\]
```

```
polyder(p)
```


We see we get the correct answer

Differentiation on Polynomials

Find the derivative for the product:

$$
\left(3 x^{2}+6 x+9\right)\left(x^{2}+2 x\right)
$$

We will use the polyder (a, b) function.

Another approach is to use define is to first use the conv($a, b)$ function to find the total polynomial, and then use polyder(p) function.

Try both methods, to see if you get the same answer.

As expected, the result are the same for the 2 methods used above. For more details, see next page.

We have that

$$
p_{1}=3 x^{2}+6 x+9
$$

and

$$
p_{2}=x^{2}+2 x
$$

The total polynomial becomes then:

$$
p=p_{1} \cdot p_{2}=3 x^{4}+12 x^{3}+21 x^{2}+18 x
$$

As expected, the results are the same for the 2 methods used above:

$$
\frac{d p}{d x}=\frac{d\left(3 x^{4}+12 x^{3}+21 x^{2}+18 x\right)}{d x}=12 x^{3}+36 x^{2}+42 x+18
$$

Hans-Petter Halvorsen

University of South-Eastern Norway www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

